Lung Cancer Treatment: Radiologist’s Emerging Role Using Thermal Ablations for Both Cure and Palliation
Terrance T. Healey, MD

Radiologist’s Emerging Role Using Thermal Ablation for Cure and Palliation
Terrance Healey M.D.
Assistant Professor
Director, Thoracic Radiology

Disclosures
None related to topic of talk

Credits
Brown Tumor Ablation Service
Damian Dupuy, MD
Derrick Tessier, NP
Amy Doorley, NP
Robin Holley

Objectives
- Discuss available thermal ablation techniques for treating tumors in the chest
- Discuss clinical indications for thermal ablation
- Describe ablation procedures, including examples of available technology using several case examples
- Discuss complications and novel treatment options

Lung Cancer Scope
- Yearly US estimated 223,000 newly diagnosed
- 157,000 deaths
- 85% of pts who acquire lung cancer will die from it
- >94 million current and former smokers in the U.S. at high risk for lung cancer

Lung Cancer Facts
Indications for Thermal Ablation

- Early Stage NSCLC/Met Relapse in XRT Field
- Chest Wall Invasion
- Painless Bone Met
- Painful Bone Met

Thermal Ablative Technologies USA Market

- Microwave ablation (MWA)
- Radiofrequency ablation (RFA)
- Cryoablation

Microwave Ablation

- High Frequency electromagnetic wave
- Microwave antenna ~1GHz up to 2.45GHz
- Oscillation of polar molecules produces frictional heating
- No electrical current - no grounding pads needed
- Multiple applicators

Microwave Ablation

- Water molecule
- Oscillation of polar molecules produces frictional heating

Treatment

- Surgery for stage 1 → 70% 5 yr survival
 - Only 1/3 surgical candidates
- External beam
 - 21% 5 yr survival stage 1
- RFA
 - 27% 5 year survival stage 1
- Emerging treatments
 - MWA & Stereotactic Body RT

MWA Systems Available

- Acculis
- BSD Medical
- Covidien
- Forea
- Medwaves
- Neuwave
- HS
- Others?

Acculis 16 G 2450 MHz 120 watts single applicator

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 3</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td></td>
</tr>
</tbody>
</table>
MONDAY

BSD 14 G 915 MHz
60 watts up to 3 applicators

Covidien 13 G 915 MHz
45 watts up to 3 applicators

Medwaves 16G 902-928 MHz
10-32 watts up to 3 applicators

Economics?
- Generator ~35-50 K
- Applicators ~1K
- Medicare global ~$2500

Procedure
- Assemble team
 - Secretary, NP x 2, RN, CT x 2, +/-resident
- Tumor ablation service consult
 - Review PMHx, labs, meds, imaging, path
- Plan
 - Anesthesia, positioning, applicator, discharge
- The rest is easy
 - Image, local anesthesia, sedation, place antenae
 - with CT-fluoro
 - Cook tumor
- Observation 3 hrs

MWA : Single Applicator
- Smaller solitary tumors under 2cm in size if plan on single treatment
- Reposition necessary for tumors larger than 2cm
- Simultaneous placement and treatment for multiple lesions
MWA: Multiple Applicators

- Tumors over 3cm in size
- Close to vessels (heat sink)
- Reduced procedure time

MWA Complications

- Pneumothorax (26/66) 39%
- Chest Tube 12%
- Skin Burn 3%
- Post ablation syndrome 2%
- Pain 2%
- ARDS 2%

Management of Air Leaks Post ablation

- Tincture of time-up to 30 days
- Blood patch may work for initial puncture
- Bronchoscopic fibrin glue
- Bronchial valves*

BPF 60 M 7mm NSCLC

Follow-up

- 1 month baseline CT w & wo
- 3 month CT
- 6 month PET-CT
- Alternating CT & PET-CT @ 9 & 12 mos
MWA Induced Tumor Cavitation

Cavitation of mass correlated with survival

Wolf et al Radiology, 2008

Local tumor progression

- Focal enhancement (>15HU)
- Rim common up to 6 mos
- FDG activity 6 mos post MWA
- Increasing size after 3 months

MWA Advantages

- Large volumes in shorter time periods
- Heat sink effect not as apparent as RFA
- Improved penetration in lung tissue
- Much less painful than RFA

Radiofrequency Ablation

- insulated electrode shaft with uninsulated tip placed in tissue
- electrical generator connected to electrode
- reference electrode (grounding pads) placed on patient’s skin
- alternating high frequency current (460-480kHz) applied
Radiofrequency Ablation
- electrical impedance of tissue allows current to flow from generator into tissue
- RF currents create a conduit for frictional heating
- heat cytotoxic >50°C

RFA Tools of the Trade
- Generators
- Electrodes

RFA of NSCSC
- Treatment Halo

RFA Complications
<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumothorax requiring chest tube or aspiration</td>
<td>0-54% (most <20%)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>0-22%</td>
</tr>
<tr>
<td>COPD exacerbation</td>
<td>0-6%</td>
</tr>
<tr>
<td>ARDS</td>
<td>0-3%</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>0-6%</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>0-12%</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>0-1%</td>
</tr>
<tr>
<td>Pleural effusion requiring drainage</td>
<td>0-4%</td>
</tr>
<tr>
<td>Pneumothoracic hemorrhage</td>
<td>0-1%</td>
</tr>
<tr>
<td>Phrenic nerve injury</td>
<td>0-1%</td>
</tr>
<tr>
<td>Death</td>
<td>0-1%</td>
</tr>
</tbody>
</table>

Cryoablation
- Joule-Thompson Effect
 - 6000 psi argon gas expands from aperture inside cryoprobe

Cryoablation
- 1.5, 1.7 and 2.4mm percutaneous probes
- Argon based systems
- Ice ball visible with CT
- Relatively painless during treatment
- Multiple applicators
Comparison of survival after sublobar resections and ablative therapies for stage I NSCLC

- Primary end points overall survival, cancer-specific survival, and cancer-free survival
- 25 SLR
- 12 RFA
- 27 Cryo
- CECT, FDG PET/CT follow-up

Conclusion

- Ablation is a safe and effective tool to help treat patients with lung tumors
 - local control
 - symptom palliation
- NSCLC stage 1 survival similar with sublobar resection and ablation
- Combination Ablation and SBRT may be superior to one RX alone
- Randomized control trials are needed to identify exact clinical roles of each modality... MWA very promising