Percutaneous Lung Biopsy in the Molecular Profiling Era
Society of Thoracic Radiology Annual Meeting
Carlsbad, California
March 17, 2015
Christopher Lee, M.D.
Assistant Professor of Radiology
Keck School of Medicine of USC

Objectives

- Evaluate the role of percutaneous lung biopsy in the molecular profiling era
- Apply various techniques that can be utilized during percutaneous lung biopsy to improve the chances of success and limit complications

Emerging indications

- Small (subcentimeter) nodules
- Ground-glass opacities
- Tumor detection following treatment
- Molecular/genetic analysis
- Clinical trial enrollment

Disclosures

- None

Percutaneous lung biopsy

- Well-established minimally-invasive method for the assessment of suspicious or indeterminate lung lesions
- Traditional goal is to obtain sufficient tissue to render accurate pathologic diagnosis

Sharpe et al. JACR 2013;10:770-773

The Increasing Role of Radiologists in Thoracic Diagnosis: More Thoracic Biopsies Are Performed Percutaneously
Biopsy techniques

- **Fine needle aspiration (FNA)**
 - Aspirating cells for cytologic and morphologic analysis
- **Core needle biopsy (CNB)**
 - Obtaining fragments of tissue for histologic and architectural assessment

Core needle biopsy vs FNA

- **Highly accurate in all practice settings**, including those in which on-site cytology not available to assess FNA specimens
- **Lower false negative rate** for diagnosing malignancy
 - 96% vs 77% accuracy
- **Favored in diagnosis of nonepithelial malignancies** (e.g., sarcoma, melanoma): 92% vs 40% accuracy
- **Superior to FNA in diagnosing benign lesions**: 92% vs 40% accuracy

CNB – immunohistochemistry

- **More tissue available for immunohistochemical tests**, which can provide more specific diagnostic information
 - Distinguish between primary and metastatic carcinoma
 - If metastatic disease, identify primary neoplasm

Zamecnik et al. Virchows Arch 2002;440:353-361

CNB – molecular profiling

- **With increasing advances in molecular analysis and targeted therapy**, greater amounts of tumor tissue needed to identify various somatic mutations
- **Molecular phenotyping** → **prescribe targeted therapy**
- **Personalized treatment of pulmonary neoplastic disease**
CNB – molecular profiling

- Genetic mutations in lung adenocarcinoma
 - EGFR (epidermal growth factor receptor)
 - KRAS (Kirsten ras viral oncogene homolog)
- EGFR and KRAS predict survival rate
- EGFR tyrosine kinase inhibitors
 - Erlotinib (Tarceva), gefitinib
- EGFR positivity → improved response rate
- KRAS positivity → lower response rate

2. Solomon et al. AJR 2010;194:266-269

Underratilization of CNB

- Despite advantages of CNB, many radiologists still prefer to biopsy lung lesions using FNA
- STR survey 2005: 3 cm peripheral mass
 - FNA favored by 73%
 - CNB favored by 14%
 - FNA+CNB favored by 13%

CNB – technique

- 20-gauge semi-automatic cutting needle inserted through a 19-gauge coaxial introducer needle
- Minimum of 3 quality core samples for complete molecular/genetic analysis

CNB – challenges

- Theoretical increased risk of pneumothorax due to larger-gauge cutting needle employed, compared to smaller-gauge aspiration needle
- Increased risk of lacerating adjacent vessels, which may cause major hemorrhage
- Vessel laceration increases risk of air embolism

Tips and tricks

- Patient positioning
- Intravenous contrast
- Breath-hold technique
- Pleural anesthesia/wheel
- Tangential approach for peripheral lesions
- Needle manipulation for deep lesions
- Autologous blood patch
- Pneumothorax management
Patient positioning

- Avoid decubitus position if possible
 - Increased respiratory excursion and ventilation of lung being biopsied
- Prone position with internal rotation of arm and towel roll under lateral chest for lesions behind scapula

Breath-hold technique

- Importance of patient cooperation
- Same-sized breath prior to scan or needle adjustment
- Small-to-medium sized breath easier to replicate
- If the patient cannot breath-hold, advance needle during same phase of quiet respiration
Pleural anesthesia

- Adequate pleural anesthesia to prevent sudden movement or change in breath-hold when entering lung
- ~5 cc 1% lidocaine within the extrapleural fat

Ko et al. Radiology 2001;218:491-496
Wallace et al. Radiology 2002;225:823-828

Pleural anesthesia/wheal

Tangential approach for peripheral lesions

- Tangential approach creates shallower pleural puncture angle, associated with increased pneumothorax rates
- For small subpleural lesions, tangential approach is more accurate
 - Direct approach may result in outer cannula slipping into pleural space during respiration

Needle repositioning for deep lesions
Autologous blood patch

- Inject patient’s own partially clotted blood through outer cannula as it is withdrawn to create parenchymal and pleural seal
- Associated with decreased pneumothorax rates, particularly extremely low rates of pneumothoraces requiring intervention

Lang et al. Radiology 2000;216:93-96
Malone et al. AJR 2013;200:1238-1243

Pneumothorax management

- If sizeable pneumothorax, withdraw coaxial outer cannula into pleural space and manually aspirate air
 - Can obviate chest tube placement¹
 - Intrapleural blood patch following aspiration may further reduce need for chest tube placement²

¹Yankelovitz et al. Radiology 1996;200:695-697
²Wagner et al. AJR 2011;197:783-788

Conclusions

- In the molecular profiling era, radiologists who perform lung biopsies should incorporate CNB technique
- By applying the concepts and techniques in this presentation, radiologists can increase their chances of success while limiting complications
References

