Cardiac FDG PET-CT Evaluation

H. Henry Guo, MD, PhD

FDG-PET Cardiac Evaluation: The yin and yang of myocardial imaging

FDG Cardiac PET Clinical Indications
- Cardiac sarcoidosis: Evaluation of cardiac granulomas
 Diagnosis and response to therapy
- Malignant and benign conditions involving the cardiac structures
- Cardiovascular disease: Assessment of viable myocardium
 Ischemia, infarction, hibernation, stunning
- Future Directions

FDG Cardiac PET:
- Theoretical changes in myocardial metabolism highlight distinct pathologic processes
- Basal: 50-75% of energy from oxidation of free fatty acids
- Fasting and low carbohydrate state: Free fatty acid metabolism
- Postprandial state: Aerobic glucose metabolism
- Ischemia: Anoxygenic glucose uptake

FDG Radiotracer Physiology

Inflammation and cardiac sarcoid
- Sarcoisidosis: Multisystem disorder characterized by noncaseating granulomas
- Cardiac involvement estimates range from 5-40%
- Significant cause of morbidity and mortality
 - Ventricular arrhythmias and heart failure
- Rationale for FDG-PET: Inflammatory cells are FDG avid
 - Suppresses cardiac glucose metabolism and drive the heart to metabolize fatty acids exclusively
 - Remaining FDG avid tissue in the myocardium is inflammatory

Blood Glucose: All 3 within normal range!
Imaging Protocol: sarcoidosis

Patient preparation: Very low carbohydrate, fat rich meal, >12 hours fast. Can inject 5-10 IU/kg of unfractionated heparin 30 min prior to scan. Can perform perfusion study prior to PET to assess for myocardial scar.

- 1. Tc-99m Tetrofosmin 10 mCi
- 2. FDG 10 mCi

FDG PET Visualizes Inflammatory Granulomas

51 year old man with ventricular tachycardia. Sarcoidosis.

FDG PET monitors response to steroid therapy

Same patient after steroid therapy.

FDG-PET can help exclude myocardial inflammation in known sarcoidosis

“Patchy” and “Patchy on diffuse” patterns are more specific for cardiac sarcoid

None

![Patchy](image)

Diffuse

Patchy on diffuse

MRI and PET-CT in Cardiac Sarcoid

- Superior spatial resolution and soft tissue characterization
- Contrast sequences allow for wall motion and contractility assessment
- No radiation
- Gadolinium enhancement at site of scar and inflammation
- Likely greater specificity

FDG PET-CT

- Imaging of active inflammation, used to assess treatment response
- Guide biopsy
- Patients with cardiac pacemakers/AICD
- Whole body imaging
- Prognosis and risk stratification
- Sensitivity 89%, Specificity 78%
Causes of increased cardiac FDG uptake

- Malignancy: primary or metastatic
- Inflammation: sarcoid, amyloid, radiation, surgery
- Infection: endocarditis, myocarditis, pericarditis, Chagas?
- Ischemia, heart failure, pulmonary hypertension
- Brown fat
- Lipomatous hypertrophy of inter-atrial septum
- Physiologic, can be due to inadequate diet preparation

FDG PET-CT in Malignancy

Diffuse large B cell lymphoma

FDG uptake: benign conditions

12 year old girl with Hodgkin’s lymphoma, with thymic and extensive brown fat uptake

FDG uptake: benign conditions

Granulation tissue uptake after trans-apical aortic valve replacement

Cardiac Viability test utilizes high myocardial glucose metabolism state

- Free Fatty Acid
- TFA + Glucose
- Glucose loading

FDG PET viability imaging:

Maximize FDG uptake in heart

How?

- Insulin

FDG

- Glucose loading: if serum glucose <150. Drink 50g glucose solution
- Eliciting dose insulin
Summary: Protocols for FDG-PET Cardiac Imaging

- **Cardiac sarcoidosis**
 - +/- Perfusion study
 - Fatty acid metabolic state whole body FDG PET-CT
- **Malignancy**
 - Whole body FDG PET-CT, consider fatty acid state FDG PET-CT
- **Coronary artery disease**
 - Rest and Stress perfusion study, SPECT or PET
- **Hibernating myocardium**
 - Perfusion study, SPECT or PET
 - Glucose loaded cardiac FDG PET-CT

Future Directions

- **FDG applications**
 - Infection: Endocarditis, pericarditis
 - Plaque characterization
- **New tracers**
 - NaF for calcifications, unstable plaque evaluation
 - Perfusion: Rhb2, Nitro, Gd-DTPA, 18-Furindraz
 - Amyloidosis: Amyloid binding agents
- **New modalities**
 - PET-MRI
Patterns of cardiac FDG uptake

None Diffuse
Pathy Pathy on diffuse

References:
5. First-pass perfusion cardiac magnetic resonance: (Takeshi Uno, Takemasa Fujino, Takayuki Yamauchi, Shigeru Sone, Sadayuki Ito) JACC Cardiovasc Imaging 2011 Sep;4(9):1375-83.

Nuclear Medicine Myocardial Evaluations

- Perfusion Cardiac PET (N-13 NH, Rb-82)
 - Evaluation of stress-induced ischemia or infarction: SPECT
 - Thallium
 - Tetrofamom / Sestamibi

- Viability Cardiac PET (FDG)
 - Evaluation of hibernating (viable) myocardium
 - Thallium (24-48 hr delay)
 - FDG PET
 - Tetrofamom / Sestamibi

- Cardiac sarcoidosis
 - Evaluation of myocardial granulomas

- FDG PET/CT

Tissue characteristics

<table>
<thead>
<tr>
<th>Tissue Type</th>
<th>Perfusion</th>
<th>FDG Uptake</th>
<th>CeMRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>+</td>
<td>− / + poor prep</td>
<td>−</td>
</tr>
<tr>
<td>Active Inflammation</td>
<td>+</td>
<td>+</td>
<td>− / +</td>
</tr>
<tr>
<td>Scar</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Viable tissue</td>
<td>−</td>
<td>− Low carb</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Hi carb</td>
<td>−</td>
</tr>
</tbody>
</table>
Cardiac Anatomy and PET Images

- **Anatomy**
 - Vertical Long Axis
 - Horizontal Long Axis
 - Short Axis

- **PET Images**
 - Apex
 - Dist
 - Mid
 - Prox

Nuclear Medicine Protocols for FDG-PET Cardiac Imaging

- “I want to evaluate for coronary artery disease”
 - Rest and stress perfusion study either with PET (NH_3/Rb 82) or SPECT (Tetrofosmin/SeSTMI/Thallium)

- “I want to evaluate for hibernating myocardium”
 - Perfusion study first to determine if there is a suspected infarct. If there is a suspected infarct, then FDG PET or Thallium SPECT

- “I want to evaluate for cardiac sarcoidosis”
 - Myocardial fatty acid metabolic state FDG PET-CT

- “I want to evaluate for malignancy”
 - Whole body FDG PET-CT, consider glucose uptake suppression

FDG Viability PET Pre-injection Protocol

- **Non-diabetic patients**
 - 6 hour fast (optional)

- **Patient scheduled to arrive 2 hours prior to scan time**

- **Check glucose:**< 130. Drink 50g glucose containing solution

- **Recheck glucose in 20 minutes and administer insulin according to a sliding scale:**
 - 130-140 mg/dL: 1 Unit regular insulin IV
 - 140-160 mg/dL: 2 Units regular insulin IV
 - 160-180 mg/dL: 3 Units regular insulin IV
 - 180-200 mg/dL: 5 Units regular insulin IV

- **Recheck glucose every 20 minutes until glucose is less than 140 mg/dL and then inject 10 mCi FDG.

Brown fat FDG uptake is suppressed by warming and benzodiazepine

Myocardial Viability or Potentially Reversible Contractile Dysfunction

CONCEPTS

- **Myocardial Hibernation**
 - Perfusion and thus supply declines, contractile function decreases to reduce demand, new supply-demand balance

- **Myocardial Stunning (Repetitive)**
 - Transient ischemic episode, prompt normalization of perfusion but delayed recovery of contractile function

Nuclear Medicine Protocols for Cardiac Imaging

- “I want to evaluate for coronary artery disease”
 - Rest and stress perfusion study either with PET (NH_3/Rb 82) or SPECT (Tetrofosmin/SeSTMI/Thallium)

- “I want to evaluate for hibernating myocardium”
 - Must do a perfusion study first to determine if there is a suspected infarct. If there is a suspected infarct, then FDG PET or Thallium SPECT

- “I want to evaluate for cardiac sarcoidosis”
 - Myocardial fatty acid metabolic state FDG PET
Thank you

H. Henry Guarino, MD
Division of Chest Imaging and Nuclear Medicine

Sarcoidosis and cardiac involvement

Multisystem disorder characterized by inflammatory cells are glucose (FDG) avid
- Suppress cardiac glucose metabolism and drive it to fatty acid metabolism
- Any remaining FDG avid tissue in the myocardium is inflammatory

Advantage: Can follow metabolic response to therapy, similar to cancer patients

Cardiac PET Tracers (Approved for Clinical Use)

1. 18F-FDG: Glucose transporter
2. 11C-Met: Amino acid transporter

Cardiac PET Versus Conventional Cardiac SPECT

Advantage:
- Improved image quality
- PET scanning better than SPECT
- Attenuation correction from CT
- Slightly improved sensitivity and specificity

Disadvantage:
- Cost
- No gated (wall motion) data available yet

Theoretical Advantage of PET vs. SPECT

Higher resolution of PET increases sensitivity for
- Less severe coronary stenoses
- Multivessel coronary disease

Attenuation correction with PET increases specificity for
- LAD disease in women
- RCA disease in men

PET vs SPECT

Josef Machac, Mount Sinai, New York

Stress-rest Tc-99m sestamibi study in a 52-year-old woman showing a small reversible defect in the anterior wall.
PET vs SPECT
Josef Machac, Mount Sinai, New York

Normal stress-rest Rb-82 PET study in the same patient

Perfusion Radiotracer Physiology

\[^{13}\text{NH}_3 \text{ Physiology} \]

Coronary Vasculature

\[
^{13}\text{NH}_3 \rightarrow ^{15}\text{NH}_4 \rightarrow ^{14}\text{NH}_4
\]

Myocyte

\[
\text{glutamate dehydrogenase}
\]

1. glutamate dehydrogenase
2. glutamine synthetase

Cardiac PET Perfusion Tracers

\[
^{13}\text{NH}_3 \rightarrow ^{15}\text{NH}_4 \rightarrow ^{14}\text{NH}_4
\]

Coronary Vasculature

MYOCYTE

Cardiac PET Perfusion Tracers

<table>
<thead>
<tr>
<th>Agent</th>
<th>Half-Life</th>
<th>Source</th>
<th>Cardiac Extraction Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{82}Rb</td>
<td>10 minutes</td>
<td>Cyclotron</td>
<td>50% to 60%</td>
</tr>
<tr>
<td>^{82}Rb</td>
<td>76 seconds</td>
<td>Gamma</td>
<td>50% to 60%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agent</th>
<th>Half-Life</th>
<th>Source</th>
<th>Cardiac Extraction Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{81}Rb</td>
<td>24 hours</td>
<td>Cyclotron</td>
<td>85%</td>
</tr>
<tr>
<td>^{81}Rb</td>
<td>6 hours</td>
<td>Gamma</td>
<td>50% to 60%</td>
</tr>
</tbody>
</table>

Imaging Protocols: PET perfusion

Input scan stress input scan

^{82}Rb 60 mCi

Input scan stress input scan

^{13}N-ammonia 30 mCi
Rb-82 Infusion System

Viability Radiotracer Physiology

Cardiac Sarcoidosis Preparation Protocol
- Ensure myocardial uptake is driven to fatty acid metabolism
- No carbohydrate, high protein and fat meal for dinner night before
- Avoid vigorous exercise for at least 24 hours

FDG Uptake in Glucose avid Cells

- GLUT 1
- Glucose
- Hexokinase
- Glc-6-P
- Enolase
- Pycnate
- Oxidation
- F6P
- F1,6B

Normal NH3 perfusion study

Cardiac PET Read-Out
Abnormal NH3 perfusion study

71 year old man with 3 vessel CABG and angina

Cardiac Sarcoidosis: effect of no-carbohydrate diet

Cardiac Sarcoidosis: FDG-PET and pathology correlation

Cardiac Sarcoidosis: pre- and post-treatment

Nuclear Medicine Protocols for Cardiac Imaging

- "I want to evaluate for coronary artery disease":
 Rest and stress perfusion study either with PET (NH3/Rb 82) or SPECT (Tetrofosmin/Sestamibi/Thallium)

- "I want to evaluate for hibernating myocardium":
 Must do a perfusion study first to determine if there is a suspected infarct.
 If there is a suspected infarct, then FDG PET or Thallium SPECT

- "I want to evaluate for cardiac sarcoidosis":
 +/- Rest perfusion study either with PET or SPECT
 Myocardial fatty acid metabolic state FDG PET

Viability Radiotracer Physiology

Blood Glucose: All 3 within normal range